THE WINDOWS PROJECT
SUBMISSION
BY CLARE OLSSEN
INFORMED BY
GRAPHS,
WEATHER AND
VIEWPOINTS
Dear Selection Committee:

Thank you so much for the opportunity to present the following Windows Project installation proposals for consideration. I am very excited about the initial brainstorming process and I look forward to developing the proposals if short-listed to the next phase. Window #3 has been modeled as a context for the proposals; however, any of the designs could be adjusted according to the dimensions if another location is assigned.

I recognize that interdisciplinary teams are encouraged and if short-listed, I hope to contact colleagues in Biomaterials and Engineering to develop the proposals, both in terms of concept and materiality. Additionally, it would be wonderful to include students on the design development and construction teams.

Project Description
The generative, emergent, anticipatory nature of the iSchool research and study drove the design process. Looking outside the window for inspiration, the weather is similarly emergent and becoming. Natural processes and materials play an active role in the emergent qualities of the following Windows Project proposals. Over time, throughout the day and seasons, dramatic changes in temperature, materials and light will affect the physicality of the installations. In the first, the sun will have a playful role in the scattering of light. In the second, sun rays and icicle formations will transform the installation. And finally, the wind will register as a slight movement across the installation and a field of vectors will direct icicle formation.

The installations are designed to not distract attention from the daily learning in their host classrooms. While at the same time, I hope that changes in the installations during different weather conditions will create continual interest, and not necessarily predictable results. Although the following renderings do not demonstrate the metamorphoses, I hope to be able to include representations of these ideas in the next phase. Please see the sidebar for more specific descriptions of each design.

Budget
The projects will not come close to maxing out the generous budget. Using a combination of parametric software for design generation and digital fabrication machines (available on campus), as well as old-fashioned manual labor, the proposals are designed to appropriate common materials to generate dynamic effects. The intervention(s) will be minimally invasive so as not to compromise the existing structure (and so that we won’t need to drill into concrete).

Maintenance
The installations may benefit from occasional leaf removal. Additionally, in a few years time, components of the piece may fail through weathering and natural decomposition. I will include additional parts so that damaged pieces can be replaced and maintained for as long as the iSchool chooses to sustain the installations.

Installation Experience
Please refer to my project website, petalproject5.com, to review the TZCO installation at DesCours in New Orleans in December 2008.

Thank you again for this opportunity.

Respectfully,
Clare Olsen
Description:
The first proposal is a three dimensionalized, abstract, faceted piece behind the window—a sort of cathedral-esque tribute to the Information Age. This idea is explored in two different materials; for one of these, translucent UV-protected plastic is proposed.

The other scheme is two faced—the pieces that face towards the back wall will be mirrored in order to create a dance of light against the concrete. The pieces that face the classroom will be subtly toned.

Materials:
UV-protected fishing wire, industrial grade
UV-protected translucent acrylic
Metal fasteners, braces
Description:
Taking cues from the shadows generated by the grate above, colored strings are stretched and twisted to create a dance of color and light. When intertwined, the strings have a varient, emergent quality. A moire effect is generated through overlays of strings, equally spaced to form a three-dimensionalized grid.

The play between the sun, shadows and strings will continue throughout the year; however, in the winter months the snow and ice will collect and grow on and between the lattice structure.

Materials:
UV-protected fishing wire, industrial grade .5” diameter PVC pipe
Weather protected, heavy gage metal mesh at window floor
Description:
Reading like a three-dimensional stock or scatter graph, this proposal allows for different interpretations depending on one’s point of view. The formation could be understood as a chandelier, swarm field or frozen cloud.

The hovering nodes will be slightly prismatic (and fronted with a non-reflective piece so that the disco effect will not spill into the classroom). These translucent elements will be secured using fishing wire connected to the grate at the top and a similar grate structure at the floor of the window well.

A slight give in the lower wire will allow for subtle movement of the pieces in the wind. The wires will also accumulate various snow and ice formations.

Materials:
UV-protected fishing wire, industrial grade

UV-protected translucent acrylic (in example shown, length of element changes according to its distance from a point near the center of the top grate (the distance and length are parametrically connected); this rectilinear shape could be modified for next phase.)

Metal grate at window floor to attach and stabilize the hovering nodes