Learning Strategies in Smart Grid Adoption: An Explorative Study in the U.S. Electric Utility Industry

You Zheng and Jason Dedrick
School of Information Studies,
Syracuse University
Based on research supported by a grant from the U.S. National Science Foundation (SES-1231192)
Challenges to U.S. utilities

- Grid reliability falling.
- Vulnerable to natural and human threats.
- Need to integrate renewables, distributed sources, demand response, EVs.
- Demand reaching capacity in some places
- Electricity accounts for 25% of US carbon emissions.
Smart grid: “Electricity with a brain”

- Smart grid applies ICTs to make the grid more reliable, secure, clean and cost efficient.
- Able to accommodate new sources and uses, matching supply and demand.
- But adoption presents new challenges to utilities. Requires a new set of knowledge and skills.
Research questions

• RQ1: what knowledge requirements are critical for smart grid adoption and what knowledge gaps are faced by utilities?
• RQ2: how are utilities responding to these knowledge gaps
• RQ3: what factors help explain differences in utilities’ responses
Theoretical positioning

- IT Adoption
- Organizational Learning

This study
**Knowledge requirements, gaps and learning strategies: from the literature**

<table>
<thead>
<tr>
<th>Four Dimensions of knowledge requirements are necessary for successful IT adoption; little discussion on knowledge gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Technical knowledge</td>
</tr>
<tr>
<td>• Business &amp; managerial knowledge</td>
</tr>
<tr>
<td>• Project management knowledge</td>
</tr>
<tr>
<td>• Data management and analytics knowledge</td>
</tr>
</tbody>
</table>

| Knowledge requirements – current knowledge = knowledge gaps |

<table>
<thead>
<tr>
<th>Learning Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Internal vs. external learning</td>
</tr>
<tr>
<td>• Exploitative vs. exploratory learning</td>
</tr>
<tr>
<td>• Fast vs. slow learning</td>
</tr>
<tr>
<td>• Narrow vs. broad learning</td>
</tr>
</tbody>
</table>

e.g. (Robey, Ross & Boudreau, 2000; Usman & Ahmad, 2012)  
e.g. (Bierly & Chakrabarti, 1996; Friesl, 2012; March, 1991)
Methods

- Qualitative: interviews with 25 utilities over three years. Recent interviews focusing on knowledge requirements
- Quantitative: survey of 142 U.S. utilities, including questions about knowledge requirements, capabilities and learning strategies
Setting: an industry in transition

Before

Local regulated monopolies

Retail
- Integrated

Distribution
- Integrated

Transmission
- Muni/co-op

Generation
- Partial, uneven Deregulation

Today

Muni/co-op, retailers

T&D
- Integrated

ISOs
- Ind. generators

School of Information Studies
SYRACUSE UNIVERSITY
Smart Grid components
IT Knowledge requirements for smart grid

• Evaluation and deployment of unfamiliar technology

• System integration: IT with IT, and IT with OT

  -- “That (integration) is a challenging stage for all the utilities because all the facilities we installed, the IT systems in our history were chosen for their own merits and didn’t necessarily link with other systems.”

• Data management, analysis and application

  -- “We used to deal with 52,000 meter readings a month and 12 months, so there is 624,000 data points, and now we pay those 52,000 times 24hrs a day times 365. I have my calculator here is 455 million data points and it’s increasing about 73,000 percent”
Organizational knowledge requirements

- Process change and integration: Projects cross organizational boundaries and require a mix of skills, e.g., IT and OT (operations technology)
- Project management: one utility has over 50 projects underway, with various contingencies
- Organizational change: Breaking organizational silos to achieve potential benefits of smart grid
Obstacles to Adoption

Fig. 8: Obstacle Rankings

- Potential revenue loss: 8 (Third most important), 1 (Second most important), 5 (First most important)
- Organizational resistance: 5 (Third most important), 6 (Second most important), 3 (First most important)
- Lack of funds: 12 (Third most important), 18 (Second most important), 15 (First most important)
- Technologies are not mature: 6 (Third most important), 14 (Second most important), 22 (First most important)
- Difficulty hiring necessary skills: 5 (Third most important), 4 (Second most important), 2 (First most important)
- Lack of internal expertise: 16 (Third most important), 11 (Second most important), 6 (First most important)
- Regulatory approval process: 4 (Third most important)
- Customer resistance: 8 (Third most important), 5 (Second most important), 10 (First most important)
Knowledge levels/gaps

Our organization has a high level of expertise in:

- Information technology: 60%
- Telecommunications/networking: 50%
- Data management: 40%
- Data analytics: 30%
- Data reporting: 45%
- Information security: 55%

Source: Syracuse University survey of U.S. utility companies: Preliminary results as of 10/1/14.
Knowledge acquisition strategies

- **Internal training and hiring.**
  - Especially for long-term ability to maintain a system
  - “There’s a huge learning curve, but now we’ve got people who have excellent knowledge of the system.”

- **External knowledge acquisition**
  - For one-time jobs, such as meter installation
  - When internal workers lack specialized skills, such as data warehousing, or system deployment

- But there is significant difference among utilities
What explains differences among utilities?

- Internal technology capabilities
- Availability of outside expertise
- Experience with precursor technologies (wireless networks, automated meter reading, SCADA...)
- Nature of the knowledge: one-time use (e.g., deploying smart meters) versus ongoing use (outage management systems).
- Pace and complexity of adoption—can it be done with internal resources
“Adoption of Smart Grid Technologies by Electrical Utilities: Factors Influencing Organizational Innovation in a Regulated Environment.” (NSF SES-1231192)

“Data Privacy for Smart Meter Data: A Scenario-Based Study” (NSF SES-1447589)

Research Experience for Undergraduates (NSF REU). Terrance Andersen

Big Data: Analysis of Pecan Street data on over 1000 households

Advanced Security Models for the Internet of Things--partnership with Unisys and National Grid

Dissertation in progress: You Zheng

Total: 4 faculty, 4 Ph.D. students, 8 Masters’ students, 2 undergrads